90.1.4 Rational Number Part 1.4 Indix and power (Part 2)
Mind it
★ a⁰ = 1
★ am × an = (a)m+n
★ (a)m+n= am × an
★ al × am × an = (a)l + m +n
★ (am) n = an×m
★ (am) n ] p = am×n×p
★ am × bm = (ab)m
★ (ab)m = am × bm
★ am ÷ an = (a)m –n
★ am ÷ bm = (a/b)m
★ (a/b)m = (b/a)–n
Reciprocals of rational numbers:
Reciprocals of
(i) a = 1/a
(ii) am = 1/a–m
(iii) a–m = 1/am
(iv) a/b = b/a
(v) (a/b)m = (a/b)–m
(vi) (a/b)–m = (a/b)m
(vii) (a/b)m = (b/a)m
(ii) (b/a)m = (a/b)m
a) Converting the positive exponent into negative:
(i)
1
am = _____
a–m
(ii)
(a/b)m = (b/a)–m
b) Converting the negative exponent into posative:
(i)
1
a–m = ______
am
(ii)
(a/b)–m = (b/a)m
Identity 1
(a + b) (a + b)
(a + b)2 = a2 + b2 + 2ab
Or
a2 + b2 + 2ab = (a + b)2
Identity 2
(a – b) (a – b)
(a – b)2 = a2 + b2 – 2ab
Or
Identity 3
(a +b)(a –b) = a2 – b2
Or
Identity 1
r12
01. Find the value of the followings:
(01) 32 × 35
(02) 2–5 × 25
(03) 25 × 24
(04) 32 × 35
(05) 5–3 × 55
(06) 2–5 × 2–5
(07) 22 × 23 × 24 × 25
(08) 23 × 25 × 22 × 27 × 29
(09) 35 × 34 × 32
(10) 21 × 29 × 22 × 28 × 23 × 27 × 25
(11) a–5 × a–5
(12) m–5 × m5
(13) p5 × p5
(14) x2 × x5
(15) n–3 × n5
02. Find the value of the followings:
(01) 31/2 × 31/5
(02) 22/3 × 21/3
(03) 21/5 × 21/5
(04) a1/2 × a1/5
(05) 5–3/4 × 55/4
(06) (3a)2/5 × (3a)3/5
(07) 21/2 × 23/2 × 24/2 × 25/2
(08) 21/4 × 22/4 × 23/4 × 25/4
(09) 35/6 × 34/6 × 32/6
(10) 21/7 × 24/7 × 22/7 × 23/7 × 26/7 × 25/7
02. Find the value of the followings:
(01) 31/2 × 31/2
(02) 22/3 × 21/3
(03) 21/5 × 21/5
(04) a1/5 × a1/5
(05) 5–3/4 × 55/4
(06) 31/2 × 31/3
(07) 22/3 × 21/4
(08) 21/5 × 21/2
(09) a1/2 × a1/5
(10) 5–3/4 × 55/7
(11) (3a)2/5 × (3a)3/4
(12) 21/2 × 23/5
(13) 21/4 × 22/5
(14) 35/6 × 34/5
(15) 21/7 ÷ 24/5
3. Find the value of the followings:
Or
Solve the followings:
(01) 32 × 52
(02) 23 × 53
(03) 55 × 25
(04) a2 × b2
(05) 51/2 × 21/2
(06) (3a)1/5 × (5b)1/5
(07) 21/2 × 31/2 × 51/2
(08) 21/2 × 31/2 × 51/2 × 71/2
(09) 51/4 × 41/4 × 31/4 × 21/4
(10) 34/6 × 24/6 × 64/6
04. Find the value of the followings:
(01) 37 ÷ 35
(02) 5–5 ÷ 53
(03) 25 ÷ 24
(04) 32 ÷ 35
(05) 5–3 ÷ 55
(06) 6–5 ÷ 6–5
(07) 22 ÷ 23
(08) 79 ÷ 75
(09) 135 ÷ 134
(10) 125 ÷ 124
5. Find the value of the followings:
(01) 31/2 ÷ 31/2
(02) 22/3 ÷ 21/3
(03) 21/5 ÷ 21/5
(04) a1/5 ÷ a1/5
(05) 5–3/4 ÷ 55/4
(06) 31/2 ÷ 31/3
(07) 22/3 ÷ 21/4
(08) 21/5 ÷ 21/2
(09) a1/2 ÷ a1/5
(10) 5–3/4 ÷ 55/7
(11) (3a)2/5 ÷ (3a)3/4
(12) 21/2 ÷ 23/5
(13) 21/4 ÷ 22/5
(14) 35/6 ÷ 34/5
(15) 21/7 ÷ 24/5
6. Find the value of the followings:
(ii) 6¹⁵ ÷ 6¹⁰
(iii) a³ × a²
(iv) 7x × 72
(v) (5²)³ ÷ 5³
(vi) 2⁵ × 5⁵
(vii) a⁴ × b⁴
(viii) (3⁴)³
(x) 8t ÷ 8²
(v) 8² ÷ 2³
(iii) 254 ÷ 53
(vi) 2³ × a³ × 5a⁴
(vi) 2³ × a³ × 5a⁴
(vi) 2³ × a³ × 5a⁴
(i) 3² × 3⁴ × 3⁸
(ii) 2³ x 2² x 5⁵
(vii) 2⁰ × 3⁰ × 4⁰
(viii) (3⁰ + 2⁰ ) × 5⁰
(ix) (2²⁰ ÷ 2¹⁵) × 2³
(i) (3⁷ / 3² ) x 3⁵
(i) (3⁷ ÷ 3² ) x 3⁵
(iii) (6² x 6⁴) ÷ 6³
(iv) ((2²)³ x 3⁶ ) x 5⁶
(ii)[(5²)³ ×5⁴] ÷ 5⁷
(xii) (2³ × 2)²
7. Find the value of the followings:
(1)
3⁷
__________
3⁴ × 3³
(2)
3 × 7² × 11⁸
___________
21 × 11³
(3)
2³ × 3³ × 4
___________
3 × 32
(4)
a⁵
___ × a⁸
a³
(5)
2⁸ × a⁵
__________
4³ × a³
(6)
4⁵ × a⁸b³
___________
4⁵ × a⁵b²
(7)
(2⁵)² × 7³
___________
8³ × 7
(8)
25 × 5² × t⁸
___________
10³ × t⁴
(9)
3⁵ × 10⁵ × 25
___________
5⁷ × 6⁵
(10)
12⁴ × 9³ × 4
______________
6³ × 8² × 27
(11)
2³ × 3⁴ × 2⁵
___________
9 × 4²
(12)
7⁴ × 7³
________
7⁶
(13)
3⁸
_________
3⁴ × 9²
(14)
1116
___________
111–3 × 1112
(15)
31/2
___________
31/4 × 91/2
(16)
71/4 × 73/4
____________
70
8. Find the value of the followings:
(1)
(12 + 22 + 3 )2
(2) Find the value of p
5 (p – 3) × 5 (2p – 8) = 225
(3)
[{(625)–1/2 }–2/3 ]2
(4)
4 1
_________ __ __________
216–2/3 216–3/4
Post a Comment
Post a Comment