All surds are irrational numbers, but the converse is not true. We know that both
A compound surd which contains exactly three surds is called a trinomial surd.
√7 – √11 + √3
Conjugate Surds
Two binomial surds which are differ only in signs (+/–) between them are called conjugate surds.
For example, √7 + √3 and √7 – √3
★★★★★
Order of Surds
The order of a surd is the index of the root / redical .
√2 = order is 2
√3 = order is 2
√5 = order is 2
√17 = order is 2
Same as
=Order is 3
= Order is 4
=Order is 5
We can add subtract multiplied or divide only the same kind of the orders and like terms numbers.
Exercise 1
a) Reduce into the lowest form of the following Surds :
Or
Write into standard form of surds:
(1) √8
(2) √9
(3) √12
(4) √18
(5) √24
(6) √27
(7) √48
(8) √50
(9) √9
(10) 2√9
(11) 2√27
(12) 3√32
(13) √64
(14) √128
(15) √36
(16) √25
(17) 2√125
(18) 5√50
(19) 6√32
(20) 3√144
(21) 2√49
Sol. (1)
= 2
Sol. (10)
= 2 × 3
= 6
Addition Subtraction Multiplication And Division Of Same Order
Addition
We add or subtract only numbers of the same order and the same surd. Numbers with unlike orders and unlike surd are never added or subtracted and sign of Addition or subtraction is placed between them.
हम केवल सामान ऑर्डर या समान करणी की संख्याओं को ही आपस में जोड़ने या घटे घटाते । असामान ऑर्डर या असमान करणी वाली संख्याएं कभी भी जोड़ा या घटाया नहीं जाता है। और उनके बीच जोड़ या घटाव का चिह्न लगाया जाता है।
Exercise 2
a) Add the following Surds
(1) √2 and √2
(2) √2 and 2√2
(3) √2 and 3√2
(4) 2√3 and √3
(5) 2√2 and 2√2
(6) 3√2 and 2√2
(7) 3√2 and 7√2
(8) √3 and √3
(9) √3 and 2√3
(10) √2 and 3√2
(11) 2√3 and √3
(12) 2√5 and 5√5
(13) 3√3 and 2√3
(14) 3√7 and 7√7
(15) √5 and √5
Sol. (1) Add √2 and √2
= (√2 ) + (√2)
= 1√2 + 1√2
= 2√2
Sol. (2) Add √2 and 2√2
= (√2 ) + (2√2)
= 1√2 + 2√2
= 3√2
Sol. (4) Add 2√3 and √3
= (2√3 ) + (√3)
= 2√3 + 1√3
= 3√3
Sol. (12) Add 2√5 and 5√5
= (2√5 ) + (5√5)
= 2√5 + 5√5
= 7√5
b) Add the following Surds
(1) √2, √2 and √2
(2) 2√2, √2 and 2√2
(3) √2, 2√2 and 3√2
(4) 2√3, 2√3 and √3
(5) 2√2, 3√2 and 2√2
(6) 3√2 , 5√2 and 2√2
(7) 3√5 , 2√5 and 7√5
(8) √3 , 2√3 and √3
(9) √3 3√3 and 2√3
(10) √2, 2√2 and 3√2
Sol. (1) Add √2, √2 and √2
= (√2 ) + (√2) + (√2)
= 1√2 + 1√2 + 1√2
= 3√2
Sol. (2) Add 2√2, √2 and 2√2
= (2√2 ) + (√2) + (2√2)
= 2√2 + 1√2 + 2√2
= 5√2
Sol. (7) 3√5 , 2√5 and 7√5
= (3√5 ) + (2√5) + (7√5)
= 3√5 + 2√5 + 7√5
= 12√5
c) Add the following Surds
(1) √2, 2√2, √2 and √2
(2) 2√2, 5√2, √2 and 2√2
(3) √2, 7√2, 2√2 and 3√2
(4) 2√3, 2√3, 2√3 and √3
(5) 2√2, 3√2, 4√2 and 5√2
(6) 3√2 , 2√2, 5√2 and 2√2
(7) 3√5 , 2√5 2√5, and 7√5
(8) √3 , 3√3, 2√3 and √3
(9) √3, 2√3, 3√3 and 2√3
(10) 2√2, √2, 2√2 and 3√2
Sol. (1) Add √2, 2√2, √2 and √2
= (√2 ) + (2√2) + (√2) + (√2)
= 1√2 + 2√2 + 1√2 + 1√2
= 5√2
Sol. (4) Add 2√3, 3√3, 4√3 and √3
= (2√3) + (3√3) + (4√3) + (√3)
= 2√3 + 3√3 + 4√3 + √3
= 10√3
d) Add the following Surds
(1) √2 and √3
(2) √3 and 2√2
(3) √3 and 3√5
(4) 2√3 and √3
(5) 2√2 and 2√4
(6) 3√2 , 5√3 and 2√2
(7) 3√5 , 2√3 and 7√5
(8) √3 , 2√3 and √7
(9) √3 3√2 and 2√3
(10) √2, 2√3 and 3√2
(11) √2, 2√3, √2 and √3
(12) 2√2, 5√5, √2 and 2√2
(13) √4, 7√2, 2√3 and 3√2
(14) 2√9, 2√3, 2√5 and √3
(15) 2√2, 3√3, 4√4 and 5√7
(16) 3√2 , 2√3, 5√2 and 2√3
(17) 3√5 , 2√25 2√9, and 7√5
(18) √3 , 3√2, 2√3 and √3
(19) √3, 2√3, 3√2 and 2√3
(20) 2√2, √4, 2√3 and 3√2
Add
Q.1 Add 2√3 + 4√5 and 3√3 –7√5
Sol. (2√3 + 4√5) + (3√3 –7√5)
= 2√3 + 4√5 + 3√3 –7√5
= 2√3 +3√3 –7√5 + 4√5)
= 5√3 –3√5
Q.2 Add 2√2 + 5√3 and √2 + 3√3
Sol. (2√2 + 5√3) + (√2 + 3√3 )
= 2√2 + 5√3 + √2 + 3√3
= 2√2 + √2 + 5√3 + 3√3
= 3√2 + 8√3 +
Exercise 4
a) Subtract the following Surds
(1) √2 from √2
(2) √2 from 2√2
(3) √2 from 3√2
(4) 2√2 from √2
(5) 2√2 from 2√2
(6) 3√2 from 2√2
(7) 3√2 from 7√2
(8) √3 from √3
(9) √3 from 2√3
(10) √2 from 3√2
(11) 2√3 from √3
(12) 2√3 from 2√3
(13) 3√3 from 2√3
(14) 3√3 from 7√3
(15) √5 from √5
b) Subtract the following Surds
(1) √2 from √3
(2) √2 from 2√5
(3) √3 from 3√2
(4) 2√3 from √2
(5) 2√4 from 2√9
(6) 3√2 from 4√8
(7) 3√3 from 7√27
(8) √3 from 5√3
(9) √5 from 2√6
(10) √2 from 3√7
(11) 2√7 from √8
(12) 2√3 from 2√9
(13) 3√3 from 2√4
(14) 3√4 from 7√3
(15) √5 from 5√25
Multiply the following Surds together
d) Multiply the following Surds
(4) 2√3 and √3
(5) 2√2 and 2√4
(6) 3√2 , 5√3 and 2√2
(7) 3√5 , 2√3 and 7√5
(8) √3 , 2√3 and √7
(9) √3 3√2 and 2√3
(10) √2, 2√3 and 3√2
(1) √2, 2√3, √2 and √3
(2) 2√2, 5√5, √2 and 2√2
(3) √4, 7√2, 2√3 and 3√2
(4) 2√9, 2√3, 2√5 and √3
(5) 2√2, 3√3, 4√4 and 5√7
(6) 3√2 , 2√3, 5√2 and 2√3
(7) 3√5 , 2√25 2√9, and 7√5
(8) √3 , 3√2, 2√3 and √3
(9) √3, 2√3, 3√2 and 2√3
(10) 2√2, √4, 2√3 and 3√2
Divide the followings
Exercise 5
a) Divide the following Surds
(1) √2 from √2
(2) √2 from 2√2
(3) √2 from 3√2
(4) 2√2 from √2
(5) 2√2 from 2√2
(6) 3√2 from 2√2
(7) 3√2 from 7√2
(8) √3 from √3
(9) √3 from 2√3
(10) √2 from 3√2
(11) 2√3 from √3
(12) 2√3 from 2√3
(13) 3√3 from 2√3
(14) 3√3 from 7√3
(15) √5 from √5
b) Divide the following Surds
(1) √2 from √3
(2) √2 from 2√5
(3) √3 from 3√2
(4) 2√3 from √2
(5) 2√4 from 2√9
(6) 3√2 from 4√8
(7) 3√3 from 7√27
(8) √3 from 5√3
(9) √5 from 2√6
(10) √2 from 3√7
(11) 2√7 from √8
(12) 2√3 from 2√9
(13) 3√3 from 2√4
(14) 3√4 from 7√3
(15) √5 from 5√25
Q. Multiply 2√3 by 3√5
Sol. 2√3 × 3√5
= 2 × 3 × √3 ×√5
= 6√15
Learn These Identities
निम्न को साधारण गुणा तथा सर्वसमिका के प्रयोग द्वारा सरल करो ।
Simplify the following by using multiplication and Identity method:
1. (6 – 4√2)²
2. (6 + 4√2)²
3. (2 + 2√3)²
4. (2 – 2√3)²
5. (√2 – √3)²
6. (√3 + √5)²
7. (√2 – 2√7)²
8. (√11 + 2√11)²
9. (√5 – 2√2)²
10. (6 + √3)²
11. ( √7 – √3)²
निम्न को साधारण गुणा तथा सर्वसमिका के प्रयोग द्वारा सरल करो ।
Simplify the following by using multiplication and Identity method:
1. (6 + 4√2) (6 + 4√2)
2. (6 – 4√2) (6 – 4√2)
3. (6 + 4√2) (6 + 4√2)
4. (6 – 4√2) (6 + 4√2)
5. (6 + 4√2) (6 – 4√2)
6. (2 + 2√3) (2 + 2√3)
7. (2 – 2√3) (2 – 2√3)
8. (√11 – √7)(√11 – √7)
1l9. (√11 + √7)(√11 + √7)
10. (√11 + √7)(√11 – √7)
11. (√11 – √7)(√11 + √7)
12. (5 + √7)(2 + √7)
13. (3√5 + √3) (3√5 - √3)
14. (3√5 + √2) (√5 - 2√3)
15. (√11 + √2) (√11 – 2√2)
Q. Divide 8√20 by 2√5
Sol. 8√20 ÷ 2√5
= 4 × √4
= 8
Q. Simplify the following expressions:
(√2 + √3) (√5 –√7)
= √2(√5 –√7) + √3) (√5 –√7)
= √10 – √14 + √15 – √21
Q.1 Add (3√5 + √3) , (-3√5 + 5√3)
Q.2 Subtract (√5 + 7√3) from ( 2√5 - √3)
Q.3 Multiply 3√5 and 5√3
Q.4 Divide 6√10 by 3√2
Q.5 Simplify the following expressions:
(i) (3√5 + √3) (3√5 - √3)
(ii) (3√5 + √2) (√5 - 2√3)
(iii) ( √7 - √3)2
(iv) (√11 + √2) (√11 - 2√2)
6. Explore
Simplify
Check whether the terms are ‘like surds’.
Following are the different types of surds.
1. Simple surd
2. Pure surd
3. Similar surds
4. Mixed surds
5. Compound surds
6. Binomial surds
7. Trinomial surds
8. Conjugate surds
Simple Surd
A surd having only one term is called a simple surd.
For example,
√2, √3
Pure Surd
A surd which is completely irrational is called pure surd.
In other words, a surd which has unity only as rational factor the other factor being irrational is called pure surd
For example,
√3, √5
Similar Surds
Two or more surds are said to be similar or like surds if they have the same surd-factor.
√3, 7√3, 10√3, -2√3
All the above surds are similar or like surds. Because, we have the same surd factor √3.
And also, two or more surds are said to be similar or like surds if they can be so reduced as to have the same surd-factor.
√5, 7√125, √20, -5√45
Each of the above surds can be expressed with the same surd-factor √5.
7√125 = 7√(25 x 5)
= 7(5√5)
= 35√5
√20 = √(4 x 5)
= 2√5
-5√45 = -5√(9 x 5)
= -5(3√5)
= -15√5
The given surds can be expressed as
√5, 35√5, 2√5, -15√5
All the above surds are similar or like surds. Because, we have the same surd factor √5.
Mixed Surds
Surds which are not completely irrational and they can be expressed as a product of a rational number and an irrational number.
For example,
5√2, 7√3
Compound Surds
An expression which contains addition or subtraction of two or more surds is called compound surd.
For example,
√2 + √5, √7 - √11 + √3
Binomial Surd
A compound surd which contains exactly two surds is called a binomial surd.
3√2 + √3
Trinomial Surds
A compound surd which contains exactly three surds is called a trinomial surd.
√7 - √11 + √3
Conjugate Surds
Two binomial surds which are differ only in signs (+/–) between them are called conjugate surds.
For example,
√7 + √3 and √7 - √3
In Addition or subtraction
√2 = 3
2
2
result.
Now + = + = .
Similarly we will find out subtraction of , .
= = =
= = =
So - = - = .
Post a Comment
Post a Comment