If sinθ + cosθ = √2​, then find the value of tanθ + cotθ.

Q. 1 If , then find the value of .

%. If sinθ + cosθ = √2​, then find the value of tanθ + cotθ.

Consider the given equation,
   …(1)

Taking square both sides, 
 
 
       ……(2)

Now, divided by cosθ in equation 1st , we get
      ….(3)

Again divided by sinθ in equation 1st, we get
           ….(4)

Add equation 1st and 2nd , we get
tanθ+cotθ+1+1=√2/cosθ+√2/sinθ 
tanθ+cotθ+2=​√2(√2​)/1/2         ……(5)
tanθ+cotθ+2=​(2)/1/2
tanθ+cotθ+2=​(2)×2/1
tanθ+cotθ =4 –2
Now, from equation 1st ,2nd and 5th ,we get 
tanθ+cotθ=2
Hence, this is the answer.

Post a Comment