Test 14 || Class 10th Maths || Ch.14 Statisticss(सांख्यिकी) (SIQ)

Test 14 || Class 10th Maths || Ch.14 Statisticss(सांख्यिकी) (SIQ)

* Empirical relationship between three measurements of the central tendency
Mode = 3 Median – 2 Mean

* If class interval is discontinuous then make it continuous by subtracting 0.5 from lower limit and adding 0.5 to upper limit.

* Model Class:– A class interval having maximum frequency is known as model class.

* Median Class : – A class interval in which commulative frequency is greater than and nearest to 'n/2' is called median class.

Q. 1. The median and mode respectively of a frequency distribution are 26 and 29, Then what is its mean ?
 Sol.
Median (Md) = 26
Mode (Mo)= 29
Mean (M) =?
Mode = 3Median –2Mean
29 = 3(26) –2M
2M = 78 –29
2M = 49 
M = 49/2 
M = 24.5

Q.2 If the difference of mode and median of a data is 24, then what is the difference of median and mean ?
Sol.
Let 
Mean = x
Median = y
Mode = z
We have, 
Condition (1)
Mode – Median = 24
z–y = 24
z = 24 + y  ....(1)

Condition (1)
z = 3y–2x ......(2)
24 + y = 3y–2x ......(2)
24 + y = 3y–2x 
(2y–2x = 24)÷2
y–x = 12
Median – Mean = 12

Q. 3 The  mean of the following distribution is 48 and sum of all the frequency is 50. Find the missing frequencies x and y .
Sol. 
We prepare following table to find mean.
Q.4 If the mean for the following frequency distribution is 26, find the value of x and y :
Class           Number of Students
10–20                         2
20–30                         3
30–40                         x
40–50                         y
Total                          40

Sol.

Class           fi.        xi.           fi×xi
00–10         6           5             30
10–20         x          15            15x
20–30         9          25            225
30–40         n          35            35y
40–50        11         45            495    
Total          40            
Sum of frequencys
x + y + 26 = 40
x + y  = 14  
x = 14 – y                ........(1)

Mean = fi × xi / fi
26 = (750 +15x + 35y)/40
1040 = 750 +15x + 35y
[15x + 35y = 1040] ÷5           
3x + 7y = 58           ........(2)
Placing the value of 'x' from equation (1) in equation (2)
3x + 7y = 58   
3(14–n) + 7y = 58   
42 – 3n + 7y = 58   
4y = 58  –42 
4y = 16
y = 4
Placing the value of 'x' in equation (1) 
x = 14 – y          
x = 14 – 4                
x = 10
y = 4

Q.5 Find the Mode of the following grouped frequency distribution. 
Sol. 
We observe that the class 12-15 has maximum frequency 23. Therefore, 12-15 is the modal class.
We have, l = 12, 
h = 3, 
f0 = 10 
f1 = 23, and 
f2 = 21

Q. 6 If the Mode for the following frequency distribution is 25 and the sum of The frequencies is 110, find the value of x and y :
Class           Number of Students
10–15                       15
15–20                         x
20–25                       40
25–30                         y
25–30                       15
Total                         110

Sol.
Class           Number of Students
10–15                       15
15–20                         x
20–25                       40
25–30                         y
25–30                       15
Total                         110
Sum of frequencys
x + y + 70 = 110
x + y  = 110–70  
x + y  = 40  
x = 14 – y                ........(1)

Mean = fi × xi / fi
26 = (750 +15x + 35y)/40
1040 = 750 +15x + 35y
[15x + 35y = 1040] ÷5           
3x + 7y = 58           ........(2)
Placing the value of 'x' from equation (1) in equation (2)
3x + 7y = 58   
3(14–n) + 7y = 58   
42 – 3n + 7y = 58   
4y = 58  –42 
4y = 16
y = 4
Placing the value of 'x' in equation (1) 
x = 14 – y          
x = 14 – 4                
x = 10
y = 4

Q. 7 If the median for the following frequency distribution is 28.5, find the value of x and y :

Sol. 
We prepare following cumulative frequency table to find median class.
Since, median is 28.5 which lies between 20-30. Thus model class is 20-30.

Q.8 The median of the following data is 525. Find the values of x and y if the total frequency is 100.
Sol.
Here median is 525, which lies between class 500-600. Thus median class is 500-600.
l = 20
N/2=200/2=50
f = 20
cf = 36 + x
h= 100

Q. 8 Draw more than ogive for the following distribution. Find the median from the curve.
Sol.
From graph, N /2 = 100 /2 = 50 
Hence, Median = 25

Post a Comment