Ex 6.5 Class 10 Maths Triangles

Triangles 

Class 10 

Ex 6.5


Q. 1. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm
Solution:

(i) 25²= 7²+24²

625= 48+576

625=625

These sides of triangle formed right angle triangle with hypotenuse 25.

(ii) 8²= 3²+6²

64= 9+36

64 ≠ 45

These sides of triangle does not formed right angle triangle.

(iii) 100²= 50²+80²

10,000= 2500+6400

10,000 ≠ 8500

These sides of triangle does not formed right angle triangle.

(iv) 13²= 5²+12²

169= 25+144

169=169

These sides of triangle formed right angle triangle with hypotenuse 13.


Q. 2. PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM×MR.
Solution:

First Method:

In a right triangle perpendicular drawn from right angle to hypotenuse divides the triangle into two similar triangles.

ΔPQM∼ ΔRPM

ar ΔPQM/ar ΔRPM = PM²/RM²

[1/2×QM×PM]/[1/2×RM×PM]= PM²/RM²

 PM²/RM² = QM/RM

 PM = QM×RM

Second Method


In ΔPQR;

QPR=90° and 

In ΔPQR and ΔMQP

In  and 

From  and 


Q. 3. In the given figure, ABD is a triangle right angled at A and AC  BD. Show that

(i) AB2 = BC.BD
(ii) AC2 = BC.DC
(iii) AD2 = BD.CD

NCERT Solutions For Class 10 Maths Chapter 6 Triangles Ex 6.1 Q18
Solution:

Steps:

(i) In ΔBAand ΔBC

∠B = ∠B (Common Angles)

∠BAD = ∠BCA  (90°)


(ii) 

NCERT Solutions For Class 10 Maths Chapter 6 Triangles Ex 6.1 Q18

In ΔBAD and ΔBCA 

∠B = ∠B (Common Angles)

∠BAD = ∠BCA (90°)

⇒ΔBAD ∼ ΔBCA (AA Similarity) ...(1)

 In ΔABD and ΔACD

∠BAD = ∠DCA (90°)

⇒ΔBAD∼ΔBCA(AA Similarity)...(2)

From (1) and (2)

AC²=BCCD

(iii) 

NCERT Solutions For Class 10 Maths Chapter 6 Triangles Ex 6.1 Q18

 In ΔABD and ΔACD

ty)



Q. 4. ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2.
Solution:

Given:

In 

ACB=90° and 

But

(by Pythagorean Theorem)


Q. 5. ABC is an isosceles triangle with AC = BC. If AB2 = 2AC2 , Prove that ABC is a right triangle.
Solution:

Given: 

In 

And

Now,

ΔABC is a right triangle


Q. 6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Solution:


Given

Sn equilateral triangle of side 2a.

So in 

 

(because D is the midpoint of BC)

In  , 

 Units 


Q. 7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
Solution:

Given:  a rhombus ABCD the diagonals AC and BD bisect each other at O.
AB = BC = CD = AD

 and OO

To prove:

A+B+C+A=A+B

In rhombus 

 and OO

In AOB=90

⇒AB²=(½AC)²+(½BD)²

AAC²BD²

⇒AB²=(AC²+BD²)/4

⇒4AB²= AC²+BD²

AB² + CB² + CD² + AD² = AC²+BD²

proved

Or

Given:  a rhombus ABCD the diagonals AC and BD bisect each other at O.
AB = BC = CD = AD

 and OO

To prove:

A+B+C+A=A+B

In rhombus 

 and OO

In AOB=90

Adding  and 

=2[(AC²/4+BD²/4+AC²/4+BD²/4)

OAC/2 and OB OBD/2

A+B+C+A=A+B


Q. 8. In the given figure, O is a point in the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
NCERT Solutions For Class 10 Maths Chapter 6 Triangles Ex 6.1 Q19
Solution:

Given: 

(i) In ΔAB

ODBCOEAC and 

Construction;

 and 

In ΔOA

 

Similarly, In ΔOB

In ΔOCE

Adding  and 

(ii) From 

[OA²+OB²+OC²−OD²−OE²−OF²] = AF²+BD²+CE²⋯(4)

[  are right triangles]



Q. 9. A ladder 10 m long reaches a window 8 m above the ground. ind the distance of the foot of the ladder from base of the wall.
Solution:

AB is height of the windows from the ground 

 is the length of the ladder 

BC is the distance between foot and the ladder 

Dince  is right angled triangle 

[Pythagoras  Theorem]

B=10²

BC²=10064

BC² =36

BC=6m

The distance between foot of wall and the ladder is 


Q. 10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
Solution:

Given:

 The length of the pole =18m

 The length of the guy wire A=24m

Distance between stake & pole BC

In 

ABC=90°


Q. 11. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after 112 hours?
Solution:


B is the distance travelled towards north 

A=1000km/hr×hr

AB = 1000×3/2km

AB = 1500km

The distance travelled by another aeroplane towards south

BC =1800km

Now, In ΔABCAB=90°

The distance between two planes after  hr 30061km

Q. 12. Two poles of heights 6 m and 11m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.
Solution:

 The height of one pole AB 

 The height of another pole CD 

 Distance between poles bottom A=12m

Distancebetween the tops of the poles 

Draw 

Now consider,

In 

Now,

The distance between the tops of poles 

Q. 13. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2.

Solution:

Steps:

Given: In ΔABCABC=90

 are points on  and 

Construction:

Join  and 

 Proof:

In  ,

In 

Adding  and 

Q. 13. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2.

Solution:

Steps:

Given: In ΔABCABC=90

 are points on  and 

Construction:

Join  and 

 Proof:

In  ,

In 

InΔABCC=90

InΔCDE, ∠DCE = 90°

⇒DE ² = CD² + CE²  .....(4)

Adding  and 

AE² + BD² AB² D


Q. 14 The perpendicular from A on side BC of a ∆ABC intersects BC at D such that DB = 3CD (see the figure). Prove that 2AB= 2AC2 + BC2.
NCERT Solutions For Class 10 Maths Chapter 6 Triangles Ex 6.1 Q20
Solution:

Given: In 

 and BD=3C

In RA ,

In RA ,

16

AB²=A+8BC²/16A

       =AB

2A=2A+B

Q. 15. In an equilateral triangle ABC, D is a point on side BC, such that BD = 13BC. Prove that 9AD2 = 7AB2.
Solution:

Steps:

 In an equilateral triangle perpendicular drawn from vertex to opposite side bisects the side]

Now In 

 is the height of an equilateral triangle which is equal to  side]

AD²=7/9 BC²


Q. 16 In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
Solution:

In 

 

Now In 

Chapter 6 Ex.6.5 Question 17

Q. 17 Tick the correct answer and justify : In   ,   and  . The angle B is

(A) 

(B) 

(C) 

(D) 

Solution ( c)

In 

Pythagoras theorem is satisfied

Post a Comment